Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging.

نویسندگان

  • Laura A Libby
  • Arne D Ekstrom
  • J Daniel Ragland
  • Charan Ranganath
چکیده

Numerous studies support the importance of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in episodic memory. Theories of PRC and PHC function in humans have been informed by neuroanatomical studies of these regions obtained in animal tract-tracing studies, but knowledge of the connectivity of PHC and PRC in humans is limited. To address this issue, we used resting-state functional magnetic resonance imaging to compare the intrinsic functional connectivity profiles associated with the PRC and PHC both across the neocortex and within the subfields of the hippocampus. In Experiment 1, we acquired standard-resolution whole-brain resting-state fMRI data in 15 participants, and in Experiment 2, we acquired high-resolution resting-state fMRI data targeting the hippocampus in an independent sample of 15 participants. Experiment 1 revealed that PRC showed preferential connectivity with the anterior hippocampus, whereas PHC showed preferential connectivity with posterior hippocampus. Experiment 2 indicated that this anterior-posterior functional connectivity dissociation was more evident for subfields CA1 and subiculum than for a combined CA2/CA3/dentate gyrus region. Finally, whole-brain analyses from Experiment 1 revealed preferential PRC connectivity with an anterior temporal and frontal cortical network, and preferential PHC connectivity with a posterior medial temporal, parietal, and occipital network. These results suggest a framework for refining models of the functional organization of the human medial temporal lobes in which the PRC and PHC are associated with distinct neocortical pathways that, in turn, may differentially interact with regions along the anterior-posterior axis of the hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content representation in the human medial temporal lobe.

Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pat...

متن کامل

Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans.

Recent models of episodic memory propose a division of labor among medial temporal lobe cortices comprising the parahippocampal gyrus. Specifically, perirhinal and lateral entorhinal cortices are thought to comprise an object/item information pathway, whereas parahippocampal and medial entorhinal cortices are thought to comprise a spatial/contextual information pathway. Although several studies...

متن کامل

Functional subregions of the human entorhinal cortex

The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resona...

متن کامل

Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity.

The hippocampus and adjacent cortical structures in the medial temporal lobe (MTL) contribute to memory through interactions with distributed brain areas. Studies of monkey and rodent anatomy suggest that parallel pathways converge on distinct subregions of the MTL. To explore the cortical areas linked to subregions of the MTL in humans, we examined cortico-cortical and hippocampal-cortical cor...

متن کامل

The Organization of Mouse and Human Cortico-Hippocampal Networks Estimated by Intrinsic Functional Connectivity

While the hippocampal memory system has been relatively conserved across mammals, the cerebral cortex has undergone massive expansion. A central question in brain evolution is how cortical development affected the nature of cortical inputs to the hippocampus. To address this question, we compared cortico-hippocampal connectivity using intrinsic functional connectivity MRI (fcMRI) in awake mice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 19  شماره 

صفحات  -

تاریخ انتشار 2012